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Abstract

Noise-contrastive estimation is a new estimation prirecthbt we have developed
for parameterized statistical models. The idea is to tragteasifier to discrim-
inate between the observed data and some artificially gestermise, using the
model log-density function in a logistic regression funati It can be proven that
this leads to a consistent (convergent) estimator of tharpaters. The method is
shown to directly work for models where the density functilmes not integrate to
unity (unnormalized models). The normalization constpattjtion function) can
be estimated like any other parameter. We compare the meiittodther methods
that can be used to estimate unnormalized models, inclstioge matching, con-
trastive divergence, and maximum-likelihood where theedrnormalization is
estimated with importance sampling. Simulations show tioége-contrastive es-
timation offers the best trade-off between computationdstatistical efficiency.
The method is then applied to the modeling of natural images.

1 Introduction

Estimation of unnormalized parameterized statistical ei®ts a computationally difficult problem.
Here, we propose a new principle for estimating such models: method provides, at the same
time, an interesting theoretical connection between uaisuged learning and supervised learning.

The basic estimation problem is formulated as follows. Asswe observe a sample of a random
vectorx € R™ which follows an unknown probability density function (paf;(.). The data pdf
pa(.) is modeled by a parameterized family of functions. We assthmép,(.) belongs to this
family. The problem we consider here is how to estimate thrarpaters from the observed sample
by maximizing some objective function.

Any solution to this estimation problem must yield a progerbrmalized density, that is a den-
sity which integrates to unity. This defines essentially astint in the optimization problem.

The constraint is hard to fulfill because even numericalgragon can easily become problematic
when the data is high-dimensional. Examples of statistitadlels where the normalization con-
straint poses a problem can be found in Markov random fielgs ¢sg. [Koster2009]), products of
experts and energy-based models [Hinton2002, Teh200d Jatilayer networks [Osindero2006,

Koster2007].

Methods have thus been proposed which estimate modelswikplicitly computing integrals; the
most recent ones are contrastive divergence [Hinton200@]saore matching [Hyvarinen2005c].
Here, we present a new estimation principle for unnormeliredels which shows advantages over
contrastive divergence or score matching. The basic idéa éstimate the model by learning to
discriminate between the data and some artificially geedrabise. The estimation principle thus
relies on noise with which the data is contrasted, so that ileefer to the new method as “noise-
contrastive estimation”.



2 Noise-contrastive estimation

2.1 Definition of the estimator

Denote byX = (x(1),...,x(T")) the observed data set, consistinglbbbservations of the datg,
and byY = (y(1),...,y(7)) an artificially generated data set of nojsavith known distribution
pn(.). Define a parametrized functign, (.; ) which models the data pgf;(.). The estimator is
then defined to be the argument which maximizes the objefttivetion

Tr(0) = % S In [A(x(8);6)] + In [1 — h(y(1);0)], where 1)
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G(u;0) = Inpy(u;6) — Inp,(u). 2)

2.2 Important properties of the estimator

Nonparametric setting Assume the model pds,,(u; #) can approximate any function and that
pn(.) IS NOnzero whenever,(.) is nonzero. Then, for large sample siZésthe maximum
of the objective functiowr is attained when the model pdf equals the data pdf.

Parametric setting For data generated according to the model,lbg.p,(u) = log p,, (u; 6*) for
a certaing*, we can show that the estimator is statistically consistent

The essential point in the above properties is that the miaation is performed without any nor-
malization constraint fop,,(.;#). This is in stark contrast to Maximum Likelihood Estimation
(MLE), wherep,, (.; @) must integrate to unity. With our objective function, no Bwonstraints are
necessary. The maximizing pdf is found to have unit integudmatically.

2.3 Connection to supervised learning

The objective function in Eq(1) occurs also in supervised learning. It is the log-likeliddn
logistic regression with the nonlinearity(u; #). Our results show thus that unsupervised learning
can be performed by supervised learning, in particular lyyshic regression and classification. This
connection provides us also with intuition of how the pragebsstimator works: By discriminating,
or comparing, between dafa and noiseY’, we are able to learn properties of the data, that is the
statistical model. In less mathematical terms, the idednoleiise-contrastive estimation can thus
be described by “learning by comparison”.

2.4 Choice of the contrastive noise distribution

The noise distributiom,, (.), which is used for contrast, is a design parameter. In gracive would
like to have a noise distribution which fulfills the follongn

1. Itis easy to sample from.

2. It has an analytical expression.

3. It leads to a small mean-squared error of the estimatdiis(d@an be analyzed, but finding
the optimum is difficult.)

Some examples which proved to be useful are the Gaussianiformardistribution, a Gaussian
mixture distribution, and an ICA distribution. Intuitivelthe noise distribution should be as close
to the data distribution as possible, because otherwiseléssification problem might be too easy
and would not require the system to learn much about thetsteiof the data.

3 Simulations

3.1 Estimation of an ICA model

We illustrate noise-contrastive estimation with the léagrof an ICA model [Hyvarinen2001], and
compare its performance with other estimation methods ahaMLE, MLE with importance sam-



pling, contrastive divergence [Hinton2002], and scoreahiag [Hyvarinen2005]. MLE gives the
performance baseline. It can, however, only be used if atytcea expression for the partition
function is available. The other methods, like noise-castive estimation, can be used to learn
unnormalized models.

Datax € R* is generated via the ICA modgl = As, whered = (ay,...,as) is a4 x 4 mixing
matrix. All four independent sourcessfollow a Laplacian density of unit variance and zero mean.
The data log-pdi p4(.) and the model log-pdh p,,,(.; 0) are

In pg(x Z V2 |bix| + ¢* and In p,,, (x;0) Z V2)bix|+¢,  (3)

respectively, wherb? is thei-th row of the matrixB* = A~! andc* is the negative logarithm of the
normalization constant (partition function). It equalgée = In |detB*| — In4. The parameters
6 € R'7 are the row vectorb; andc. In MLE, the correct value of is known for every choice of
b;.

Figure 1 shows the simulation results:

e The error in the parameters for the demixing mattixdecreases with increasing sample
sizeT (red circles). The same holds for the error in the log-noinagion constant (red
squares). This illustrates the consistency of noise-egtitfe estimation as convergence in
guadratic mean implies convergence in probability.

e Noise-contrastive estimation performs better than MLE reltee normalization constant
is calculated with importance sampling (markers in magenta

e Contrastive divergence (green triangles) yields, for fisadhple sizes, more accurate re-
sults than noise-contrastive estimation with Gaussianrastive-noise. The performance
of noise-contrastive estimation improves, however, fgulaaian noise (results not shown).

e Noise-contrastive estimation requires about three tiress komputation time than the
other methods to reach a required level of precision in thienases. Among the meth-
ods for unnormalized models, noise-contrastive estimatiffers thus the best trade-off
between computational and statistical efficiency.

e Score matching (blue diamonds) is outperformed by the atiethods. The reason is that
we had to resort to an approximation of the Laplacian deffigitthe estimation with score
matching.

3.2 Estimating models of natural images

We use here noise-contrastive estimation to learn thes8tai structure of natural images. Cur-
rent multi-layer models for natural image (patches) arerka2005, Osindero2006, Koster2007,
Lee2008, Osindero2008]. A three-layer model is presem¢@sindero2008], while the other cita-
tions are two-layer models.

The two-layer model is

log pm (x;0) thh In [v, (Wx)? + 1] +b,) + (4)

where fi, is a smooth thresholding function. The parametes the model are the matrii/,
the row vectorss,, and the bias termé,, which define the thresholds. The only constraint we are
imposing is that the vectoss, are limited to have only positive entries.

Figure 2 shows shows the estimation results. The first lagatufesw,; (rows of W) are Gabor-
like. The second layer weighte; pool together features of similar orientation and freqyenc
which are not necessarily centered at the same location.rddwts correspond to those reported
in [Koster2007], as well as [Osindero2006].

Preliminary simulations where we learned a model which paoh third layer together the outputs
of the second layer, i.ez® = In [V(Wx)? + 1], led to the emergence of cross-frequency and
cross-orientation inhibition of the complex-cells.
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(a) Estimation accuracy (b) Estimation accuracy versus computation time
Figure 1: Performance comparison for the estimation of aA H@odel. Black crosses show
maximume-likelihood estimation (MLE), red circles and stpgshow noise-contrastive estimation
with Gaussian noise (NCE GN), blue diamonds show score rimt¢B8M), pink stars and squares
show MLE with importance sampling, and green triangles sbhomtrastive divergence (CD) where
we used one cycle of Hamiltonian Monte Carlo with three leag&teps. For each sample size

we created 500 random mixing matricésthe figures show the median of the results. The compu-
tation time indicates the total time needed by each meth@stimate the parameters. It included
thus sampling of noise when needed. It was measured by risdblaiti-in commands tic and toc.

Figure 2: Complex cell-like pooling of similarly orienteca®or filters. Each row shows one pooling
pattern of simple cells, giving a complex cell. The blackiader each featune; (row of the matrix

W) indicates the value of an element in the veastgr Gaussian noise with the same covariance as
natural images was used for the contrastive noise disioibyt,(.). The patch size of the natural
images was 20 pixels.



