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Abstract

Noise-contrastive estimation is a new estimation principle that we have developed
for parameterized statistical models. The idea is to train aclassifier to discrim-
inate between the observed data and some artificially generated noise, using the
model log-density function in a logistic regression function. It can be proven that
this leads to a consistent (convergent) estimator of the parameters. The method is
shown to directly work for models where the density functiondoes not integrate to
unity (unnormalized models). The normalization constant (partition function) can
be estimated like any other parameter. We compare the methodwith other methods
that can be used to estimate unnormalized models, includingscore matching, con-
trastive divergence, and maximum-likelihood where the correct normalization is
estimated with importance sampling. Simulations show thatnoise-contrastive es-
timation offers the best trade-off between computational and statistical efficiency.
The method is then applied to the modeling of natural images.

1 Introduction
Estimation of unnormalized parameterized statistical models is a computationally difficult problem.
Here, we propose a new principle for estimating such models.Our method provides, at the same
time, an interesting theoretical connection between unsupervised learning and supervised learning.

The basic estimation problem is formulated as follows. Assume we observe a sample of a random
vectorx ∈ R

n which follows an unknown probability density function (pdf) pd(.). The data pdf
pd(.) is modeled by a parameterized family of functions. We assumethat pd(.) belongs to this
family. The problem we consider here is how to estimate the parameters from the observed sample
by maximizing some objective function.

Any solution to this estimation problem must yield a properly normalized density, that is a den-
sity which integrates to unity. This defines essentially a constraint in the optimization problem.
The constraint is hard to fulfill because even numerical integration can easily become problematic
when the data is high-dimensional. Examples of statisticalmodels where the normalization con-
straint poses a problem can be found in Markov random fields (see e.g. [Koster2009]), products of
experts and energy-based models [Hinton2002, Teh2004], and multilayer networks [Osindero2006,
Koster2007].

Methods have thus been proposed which estimate models without explicitly computing integrals; the
most recent ones are contrastive divergence [Hinton2002] and score matching [Hyvarinen2005c].
Here, we present a new estimation principle for unnormalized models which shows advantages over
contrastive divergence or score matching. The basic idea isto estimate the model by learning to
discriminate between the data and some artificially generated noise. The estimation principle thus
relies on noise with which the data is contrasted, so that we will refer to the new method as “noise-
contrastive estimation”.
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2 Noise-contrastive estimation

2.1 Definition of the estimator

Denote byX = (x(1), . . . ,x(T )) the observed data set, consisting ofT observations of the datax,
and byY = (y(1), . . . ,y(T )) an artificially generated data set of noisey with known distribution
pn(.). Define a parametrized functionpm(.; θ) which models the data pdfpd(.). The estimator is
then defined to be the argument which maximizes the objectivefunction

JT (θ) =
1

2T

∑

t

ln [h(x(t); θ)] + ln [1 − h(y(t); θ)] , where (1)

h(u; θ) =
1

1 + exp[−G(u)]
, G(u; θ) = ln pm(u; θ) − ln pn(u). (2)

2.2 Important properties of the estimator

Nonparametric setting Assume the model pdfpm(u; θ) can approximate any function and that
pn(.) is nonzero wheneverpd(.) is nonzero. Then, for large sample sizesT , the maximum
of the objective functionJT is attained when the model pdf equals the data pdf.

Parametric setting For data generated according to the model, i.e.log pd(u) = log pm(u; θ∗) for
a certainθ∗, we can show that the estimator is statistically consistent.

The essential point in the above properties is that the maximization is performed without any nor-
malization constraint forpm(.; θ). This is in stark contrast to Maximum Likelihood Estimation
(MLE), wherepm(.; θ) must integrate to unity. With our objective function, no such constraints are
necessary. The maximizing pdf is found to have unit integralautomatically.

2.3 Connection to supervised learning

The objective function in Eq.(1) occurs also in supervised learning. It is the log-likelihood in
logistic regression with the nonlinearityG(u; θ). Our results show thus that unsupervised learning
can be performed by supervised learning, in particular by logistic regression and classification. This
connection provides us also with intuition of how the proposed estimator works: By discriminating,
or comparing, between dataX and noiseY , we are able to learn properties of the data, that is the
statistical model. In less mathematical terms, the idea behind noise-contrastive estimation can thus
be described by “learning by comparison”.

2.4 Choice of the contrastive noise distribution

The noise distributionpn(.), which is used for contrast, is a design parameter. In practice, we would
like to have a noise distribution which fulfills the following:

1. It is easy to sample from.

2. It has an analytical expression.

3. It leads to a small mean-squared error of the estimator. (This can be analyzed, but finding
the optimum is difficult.)

Some examples which proved to be useful are the Gaussian or uniform distribution, a Gaussian
mixture distribution, and an ICA distribution. Intuitively, the noise distribution should be as close
to the data distribution as possible, because otherwise, the classification problem might be too easy
and would not require the system to learn much about the structure of the data.

3 Simulations

3.1 Estimation of an ICA model

We illustrate noise-contrastive estimation with the learning of an ICA model [Hyvarinen2001], and
compare its performance with other estimation methods, namely MLE, MLE with importance sam-
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pling, contrastive divergence [Hinton2002], and score matching [Hyvarinen2005]. MLE gives the
performance baseline. It can, however, only be used if an analytical expression for the partition
function is available. The other methods, like noise-contrastive estimation, can be used to learn
unnormalized models.

Datax ∈ R
4 is generated via the ICA modelx = As, whereA = (a1, . . . ,a4) is a4 × 4 mixing

matrix. All four independent sources ins follow a Laplacian density of unit variance and zero mean.
The data log-pdfln pd(.) and the model log-pdfln pm(.; θ) are

ln pd(x) = −
4

∑

i=1

√
2 |b⋆

i x| + c∗ and ln pm(x; θ) = −
4

∑

i=1

√
2|bix| + c, (3)

respectively, whereb⋆

i
is thei-th row of the matrixB⋆ = A−1 andc∗ is the negative logarithm of the

normalization constant (partition function). It equals here c∗ = ln |detB⋆| − ln 4. The parameters
θ ∈ R

17 are the row vectorsbi andc. In MLE, the correct value ofc is known for every choice of
bi.

Figure 1 shows the simulation results:

• The error in the parameters for the demixing matrixB decreases with increasing sample
sizeT (red circles). The same holds for the error in the log-normalization constantc (red
squares). This illustrates the consistency of noise-contrastive estimation as convergence in
quadratic mean implies convergence in probability.

• Noise-contrastive estimation performs better than MLE where the normalization constant
is calculated with importance sampling (markers in magenta).

• Contrastive divergence (green triangles) yields, for fixedsample sizes, more accurate re-
sults than noise-contrastive estimation with Gaussian contrastive-noise. The performance
of noise-contrastive estimation improves, however, for Laplacian noise (results not shown).

• Noise-contrastive estimation requires about three times less computation time than the
other methods to reach a required level of precision in the estimates. Among the meth-
ods for unnormalized models, noise-contrastive estimation offers thus the best trade-off
between computational and statistical efficiency.

• Score matching (blue diamonds) is outperformed by the othermethods. The reason is that
we had to resort to an approximation of the Laplacian densityfor the estimation with score
matching.

3.2 Estimating models of natural images

We use here noise-contrastive estimation to learn the statistical structure of natural images. Cur-
rent multi-layer models for natural image (patches) are [Karklin2005, Osindero2006, Koster2007,
Lee2008, Osindero2008]. A three-layer model is presented in [Osindero2008], while the other cita-
tions are two-layer models.

The two-layer model is

log pm(x; θ) =
∑

n

fth
(

ln
[

vn(Wx)2 + 1
]

+ bn

)

+ c, (4)

wherefth is a smooth thresholding function. The parametersθ of the model are the matrixW ,
the row vectorsvn and the bias termsbn, which define the thresholds. The only constraint we are
imposing is that the vectorsvn are limited to have only positive entries.

Figure 2 shows shows the estimation results. The first layer featureswi (rows of W ) are Gabor-
like. The second layer weightsvi pool together features of similar orientation and frequency,
which are not necessarily centered at the same location. Theresults correspond to those reported
in [Koster2007], as well as [Osindero2006].

Preliminary simulations where we learned a model which pools in a third layer together the outputs
of the second layer, i.e.z(2) = ln

[

V (Wx)2 + 1
]

, led to the emergence of cross-frequency and
cross-orientation inhibition of the complex-cells.
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(b) Estimation accuracy versus computation time

Figure 1: Performance comparison for the estimation of an ICA model. Black crosses show
maximum-likelihood estimation (MLE), red circles and squares show noise-contrastive estimation
with Gaussian noise (NCE GN), blue diamonds show score matching (SM), pink stars and squares
show MLE with importance sampling, and green triangles showcontrastive divergence (CD) where
we used one cycle of Hamiltonian Monte Carlo with three leapfrog steps. For each sample sizeT ,
we created 500 random mixing matricesA, the figures show the median of the results. The compu-
tation time indicates the total time needed by each method toestimate the parameters. It included
thus sampling of noise when needed. It was measured by matlab’s built-in commands tic and toc.

Figure 2: Complex cell-like pooling of similarly oriented Gabor filters. Each row shows one pooling
pattern of simple cells, giving a complex cell. The black barunder each featurewi (row of the matrix
W ) indicates the value of an element in the vectorvn. Gaussian noise with the same covariance as
natural images was used for the contrastive noise distribution pn(.). The patch size of the natural
images was 20 pixels.
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